
Zozzle: Low-overhead Mostly Static JavaScript Malware Detection

Charles Curtsinger Benjamin Livshits and Benjamin Zorn Christian Seifert

UMass at Amherst Microsoft Research Microsoft

Microsoft Research Technical Report
MSR-TR-2010-156

Abstract

JavaScript malware-based attacks account for a large

fraction of successful mass-scale exploitation happening

today. From the standpoint of the attacker, the attraction

is that these drive-by attacks can be mounted against an

unsuspecting user visiting a seemingly innocent web page.

While several techniques for addressing these types of

exploits have been proposed, in-browser adoption has been

slow, in part because of the performance overhead these

methods tend to incur.

In this paper, we propose ZOZZLE, a low-overhead

solution for detecting and preventing JavaScript malware

that can be deployed in the browser. Our experience also

suggests that ZOZZLE may be used as a lightweight filter for

a more costly detection technique or for standalone offline

malware detection.

Our approach uses Bayesian classification of hierarchi-

cal features of the JavaScript abstract syntax tree to identify

syntax elements that are highly predictive of malware. Our

extensive experimental evaluation shows that ZOZZLE is

able to detect JavaScript malware through mostly static code

analysis effectively. In our experiments, the most accurate

classifier did not produce any false positives, implying

a false positive rate of below 0.01%. Despite this high

accuracy, the classifier is very fast, with a throughput at

over 1 MB of JavaScript code per second.

2

I. INTRODUCTION

In the last several years, we have seen mass-scale exploita-
tion of memory-based vulnerabilities migrate towards heap
spraying attacks. This is because more traditional vulnera-
bilities such as stack- and heap-based buffer overruns, while
still present, are now often mitigated by compiler techniques
such as StackGuard [11] or operating system mechanisms such
as NX/DEP and ALSR [18]. While several heap spraying
solutions have been proposed [12, 34], arguably, none are
lightweight enough to be integrated into a commercial browser.

Specifically, NOZZLE is an effective heap spraying preven-
tion technique with a low false positive and false negative rate.
However, the overhead of this runtime technique may be 10%
or higher, which is too much overhead to be acceptable in
today’s competitive browser market [34]. This paper is based
on our experience using NOZZLE for offline (HoneyMonkey-
style) heap spray detection. By deploying NOZZLE on a large
scale, in the context of a dynamic web crawler, we are able
to scan millions of URLs daily and find thousands of heap
spraying attacks in the process. Offline URL scanning is a
practical alternative to online, in-browser detection. Malicious
URLs detected in this manner are used in the following two
ways: to enhance a browser-based blacklist of malicious URLs
as well as a blacklist of sites not to serve with a search engine.

However, a browser-based detection technique is still at-
tractive for several reasons. Offline scanning is often used in
modern browsers to check whether a particular site the user
visits is benign and to warn the user otherwise. However, be-
cause it takes a while to scan a very large number of URLs that
are in the observable web, some URLs will simply be missed
by the scan. Offline scanning is also not as effective against
transient malware that appears and disappears frequently, often
at new URLs. In this paper we present a third application
of offline scanning techniques: we show how to use NOZZLE

offline scanning results on a large scale to train ZOZZLE, a
lightweight heap spraying JavaScript malware detector.

ZOZZLE is a mostly static detector that is able to examine a
page and decide if it contains a heap spray exploit. While its
analysis is entirely static, ZOZZLE has a runtime component:
to address the issue of JavaScript obfuscation, ZOZZLE is
integrated with the browser’s JavaScript engine to collect
and process JavaScript code that is created at runtime. Note
that fully static analysis is difficult because JavaScript code
obfuscation and runtime code generation are so common in
both benign and malicious code.

This paper discusses the design and evaluation of ZOZZLE

and proposes two deployment strategies. We show how to
integrate such a detector into the JavaScript parser of a browser
in a manner that makes the runtime performance overhead
minimal. We also suggest how to combine ZOZZLE with a
secondary detection technique such as NOZZLE within the
browser, as well as using it for offline scanning. In our
experience, ZOZZLE finds many more malware pages than
NOZZLE, in part because NOZZLE requires an attack to be
initiated for a successful detection, whereas with ZOZZLE, it is
enough for the underlying JavaScript code to appear malicious.

Classifier-based tools are susceptible to being circumvented
by an attacker who knows the inner workings of the tool and
is familiar with the list of features being used, however, our
preliminary experience with ZOZZLE suggests that it is capable
of detecting thousands of malicious sites daily in the wild.

While we acknowledge that a determined attacker may be
able to design malware that ZOZZLE will not detect, our focus
in this paper is on creating a very low false positive, low-
overhead scanner. Just as is the case with anti-virus tools, often
the penalty for a single false positive — marking a benign site
as malicious — for a malware detector is considerably higher
than the cost of a false negative. Consequently, the main focus
of both our design and experimental evaluation is on ensuring
that the false positive rate of ZOZZLE remain very low. In our
experiments conducted on a scale of millions of URLs, we
show that ZOZZLE produces false positive rates of a fraction
of 1%, while incurring only a small runtime overhead, usually
not exceeding a few milliseconds per JavaScript file.

A. Contributions

This paper makes the following contributions:
• Mostly static malware detection. We propose ZOZZLE,

a highly precise lightweight mostly static JavaScript mal-
ware detection approach. ZOZZLE is based on extensive
experience analyzing thousands of real malware sites
found, while performing dynamic crawling of millions
of URLs using the NOZZLE runtime detector [34].

• AST-based detection. We describe an AST-based tech-
nique that involves the use of hierarchical (context-
sensitive) features for detecting malicious JavaScript
code, which scales to over 1,000 features, while remain-
ing fast enough to use on-the-fly, in the context of a web
browser. This is in part due to our fast, parallel feature
matching that is a considerable improvement over the
naı̈ve sequential feature matching approach.

• Evaluation. We evaluate ZOZZLE in terms of performance
and malware detection rates (both false positives and
false negatives) using thousands of labeled code samples.
Our most accurate classifier did not produce any false
positives, implying a false positive rate of below 0.01%.
Despite this high accuracy, the classifier is very fast, with
a throughput at over 1 MB of JavaScript code per second
for deployable classifier configurations.

• Staged analysis. We advocate the use of ZOZZLE as a
first stage for NOZZLE or anti-virus-based detection. In
this setting, the use of ZOZZLE drastically reduces the
expected end-user overhead for in-browser protection.
We also evaluate ZOZZLE extensively by using it in the
context of offline scanning.

B. Paper Organization

The rest of the paper is organized as follows. Section II
gives some background information on JavaScript exploits and
their detection and summarizes our experience of performing

3

<html>
<body>

<button id="butid" onclick="trigger();"
style="display:none"/>

<script>
// Shellcode
var shellcode=unescape(’\%u9090\%u9090\%u9090\%u9090...’);
bigblock=unescape(’\%u0D0D\%u0D0D’);
headersize=20;
shellcodesize=headersize+shellcode.length;
while(bigblock.length<shellcodesize){bigblock+=bigblock;}
heapshell=bigblock.substring(0,shellcodesize);
nopsled=bigblock.substring(0,

bigblock.length-shellcodesize);
while(nopsled.length+shellcodesize<0x25000){

nopsled=nopsled+nopsled+heapshell
}

// Spray
var spray=new Array();
for(i=0;i<500;i++){spray[i]=nopsled+shellcode;}

// Trigger
function trigger(){

var varbdy = document.createElement(’body’);
varbdy.addBehavior(’#default#userData’);
document.appendChild(varbdy);

try {
for (iter=0; iter<10; iter++) {

varbdy.setAttribute(’s’,window);
} catch(e){ }
window.status+=’’;

}
document.getElementById(’butid’).onclick();

}
</script>

</body>
</html>

Fig. 1: Heap spraying attack example.

offline scanning with NOZZLE on a large scale. Section III
describes the implementation of our analysis. Section IV
describes our experimental methodology. Section V describes
our experimental evaluation. Sections VI and VII discusses
related and future work, and, finally, Section VIII concludes.

II. OVERVIEW

This section is organized as follows. Section II-A gives over-
all background on JavaScript-based malware, focusing specif-
ically on heap spraying attacks. Section II-B summarizes our
experience of offline scanning using NOZZLE and categorizes
the kind of malware we find using this process. Section II-C
digs deeper into how malware is usually structured, including
the issue of obfuscation. Finally, Section II-D provides a
summary of the ZOZZLE techniques.

A. JavaScript Malware Background

Figure 1 shows an example of malicious JavaScript contain-
ing a typical heap-spraying attack. Such an attack consists of
three relatively independent parts. The shellcode is the portion
of executable machine code that will be placed on the browser
heap when the exploit is executed. It is typical to precede the
shellcode with a block of NOP instructions (so-called NOP
sled). The sled is often quite large compared to the size of the
subsequence shellcode, so that a random jump into the process

53.0%

9.4%

9.0%

5.6%

3.3%

3.2%

3.2%

3.0%

2.8%

1.3%

1.1%

0.8%

0.7%

0.4%

0.4%

0.4%

0.4%

0.3%

0.2%

0.2%

0.2%

0.2%

0.1%

0.1%

0.1%

0.1%

01.js

02.js

03.js

04.js

05.s

06.js

07.js

08.js

09.js

10.js

11.js

12.js

13.js

14.js

15.js

16.js

17.js

18.js

19.js

20.js

21.js

22.js

23.js

24.js

25.js

26.js

Fig. 2: Distribution of different exploit samples in the wild.

address space is likely to hit the NOP sled and slide down to
the start of the shellcode.

The next part is the spray, which allocates many copies of
the NOP sled/shellcode in the browser heap. In JavaScript,
this may be easily accomplished using an array of strings.
Spraying of this sort can be used to defeat address space layout
randomization (ASLR) protection in the operating system [18].
The last part of the exploit triggers a vulnerability in the
browser; in this case, the vulnerability is a well-known flaw
in Internet Explorer 6 that exploits a memory corruption issue
with function addBehavior.

Note that the example in Figure 1 is entirely unobfuscated,
with the attacker not even bothering to rename variables such
as shellcode, nopsled, and spray to make the attack easier
to spot. In practice, many attacks are obfuscated prior to
deployment, either by hand, or using one of many available
obfuscation kits [17]. To avoid detection, the primary tech-
niques used by obfuscation tools is to use eval unfolding, i.e.
self-generating code that uses the eval construct in JavaScript
to produce more code to run.

B. Characterizing Malicious JavaScript

To gather the data we use to train the ZOZZLE classifier
and evaluate it, we employed a web crawler to visit many
ranomly selected URLs and process them with NOZZLE to

4

Sample Name Shellcode Spray CVE

01.js unescape yes 2009-0075

02.js unescape yes 2009-1136

03.js unescape yes 2010-0806

04.js unescape yes 2010-0806

05.js none no 2010-0806

06.js hex, unescape yes none

07.js replace, unescape no none

09.js unescape yes 2009-1136

08.js replace, hex, unescape yes 2010-0249

10.js custom, unescape yes 2010-0806

11.js unescape yes none

12.js replace, array yes 2010-0249

13.js unescape yes none

14.js unescape yes 2009-1136

15.js replace, unescape no none

16.js replace, unescape yes none

17.js unescape yes 2010-0249

18.js unescape yes 2010-0806

19.js hex, unescape yes 2008-0015

20.js unescape no none

21.js replace, unescape no none

22.js unescape, array yes 2010-0249

23.js replace, unescape yes 2010-0806

24.js replace, unescape yes 2010-0806

25.js replace, unescape yes none

26.js replace, unescape no none

Fig. 3: Malware samples described.

detect if malware was present. Note that because we use
NOZZLE to identify malicious JavaScript, the malware we
detect always contains a heap-spray in addition to shellcode
and the vulnerability.

Once we determine that JavaScript is malicious, we invested
a considerable effort in examining the code by hand and
categorizing it in various ways. Here we present summary
statistics about the body of malicious JavaScript that we have

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140

U
n

iq
u

e
 E

xp
lo

it
s

D
is

co
ve

re
d

Malicious URLs Examined

Fig. 4: Saturation: discovering more exploit samples over time. The
x axis shows the number of examined malware samples, the y axis
shows the number of unique ones.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

R
e

m
ai

n
in

g
M

al
ic

io
u

s
U

R
Ls

Fig. 5: Transience of detected malicious URLs after several days. The
number of days is shown of the x axis, the percentage of remaining
malware is shown on the y axis.

identified and classified.
Figure 2 shows the observed distribution of distinct malware

instances based on 169 malware samples we investigated.

es.doowon.ac.kr
18.7KB

1.0KB
<script>

<iframe>

eval

0.1KB...

65B

www.andywu.com
20.2KB

50B 3.0KB

eval eval

depends
on

depends
on

65B

www.andywu.com
2.53KB

50B 0.6KB

eval eval

depends
on

depends
on

... x 10

X 13

Fig. 6: Unfolding tree: an example. Rectangles are documents,
and circles are JavaScript contexts. Gray circles are benign, black
are malicious, and dashed are “co-conspirators” that participate in
deobfuscation. Edges are labeled with the method by which the
context or document was reached. The actual page contains 10
different exploits using the same obfuscation.

5

0%

5%

10%

15%

20%

25%

30%

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

Fr
ac

ti
o

n
 o

f
D

e
o

b
fu

sc
at

e
d

 U
R

Ls

Benign Malicious

Fig. 7: Distribution of context counts for malware and benign code.

The figure shows that the malware we detected observes a
highly skewed distribution, with one of the samples accounting
for more than 50% of the total malware observed. We give
each unique sample a label, and Figure 3 provides additional
details about each sample, including the CVE number of the
vulnerability being exploited, how the shellcode and NOP sled
is constructed, and how the spray is executed.

Shellcode and nopsled type describe the method by which
JavaScript (or HTML) values are converted to the binary
data that is sprayed throughout the heap. The ’decode’ type
is an ad-hoc encoding scheme developed as a part of the
exploit. Most shellcode and nopsleds are written using the
%u or \x encoding and are converted to binary data with
the JavaScript unencode function. Finally, some samples
include short fragments inserted at many places (such as the
string CUTE) that are removed or replaced with a call to
the JavaScript replace function. In all but one case, the
heap-spray is carried out using a for loop. The ’plugin’
spray is executed by an Adobe Flash plugin included on the
page, and not by JavaScript code. The CVE is the identifier
assigned to the vulnerability exploited by the sample. CVEs
(Common Vulnerabilities and Exposures) are assigned when
new vulnerabilities are discovered and verified. This database
is maintained by the MITRE Corporation.

Any offline malware detection scheme must deal with the
issues of transience and cloaking. Transient malicious URLs
go offline or become benign after some period of time, and
cloaking is when an attack hides itself from a particular user
agent, IP address range, or from users who have visited the
page before. While we tried to minimize these effects in
practice by scanning from a wider range of IP addresses, in
general, these issues are difficult to fully address.

Figure 5 summarizes information about malware transience.
To compute the transience of malicious sites, we re-scan the
set of URLs detected by Nozzle on the previous day. This
procedure is repeated for three weeks (21 days). The set
of all discovered malicious URLs were re-scanned on each
day of this three week period. This means that only the
URLs discovered on day one were re-scanned 21 days later.
The URLs discovered on day one happened to have a lower
transience rate than other days, so there is a slight upward

slope toward the end of the graph.
Any offline scanning technique cannot keep up with mal-

ware exhibiting such a high rate of transience–Nearly 20%
of malicious URLs were gone after a single day. We believe
that in-browser detection is desirable, in order to be able to
detect new malware before it has a chance to affect the user
regardless of whether the URL being visited has been scanned
before.

C. Dynamic Malware Structure

One of the core issues that needs to be addressed when
talking about JavaScript malware is the issue of obfuscation.
In order to avoid detection, malware writers resort to various
forms of JavaScript code obfuscation, some of which is done
by hand, other with the help of many available obfuscation
toolkits [17]. Many approaches to code obfuscation exist. In
practice, we often see eval unfolding as the most prominent.
The idea is to use the eval language feature to generate code
at runtime in a way that makes the original code difficult
to pattern-match. Often, this form of code unfolding is used
repeatedly, so that many levels of code are produced before
the final, malicious version emerges.

Example 1 Figure 6 illustrates the process of code unfolding
using a specific malware sample obtained from a web site
http://es.doowon.ac.kr. At the time of detection, this malicious
URL flagged by NOZZLE contained 10 distinct exploits, which
is not uncommon for malware writers, who tend to “over-
provision” their exploit. To increase the chances of successful
exploitation, they may include multiple exploits within the
same page. Each exploit in our example is pulled in with an
<iframe> tag.

Each of these exploits is packaged in a similar fashion. The
leftmost context is the result of a eval in the body of the page
that defines a function. Another eval call from the body of
the page uses the newly-defined function to define another new
function. Finally, this function and another eval call from the
body exposes the actual exploit. Surprisingly, this page also
pulls in a set of benign contexts, consisting of page trackers,
JavaScript frameworks, and site-specific code. �

Note, however, that the presence of eval unfolding does
not provide a reliable indication of malicious intent. There
are plenty of perfectly benign pages that also perform some
form of code obfuscation, for instance, as a weak form of
copy protection to avoid code piracy. Many commonly used
JavaScript library frameworks do the same, often to save space
through client-side code generation.

We instrumented the ZOZZLE deobfuscator to collect infor-
mation about which code context leads to other code contexts,
allowing us to collect information about code unfolding depth.
Figure 7 shows a distribution of JavaScript context counts
for benign and malicious URLs. The majority of URLs have
only several JavaScript code contexts, however, many can
have 50 or more, created through either <iframe> or <script>

inclusion or eval unfolding. Some pages, however, may have
as many as 200 code contexts. In other words, a great deal of

6

e
xt

ra
ct

io
n

 a
n

d
 l

a
b

e
li

n
g

cl
a

ss
if

ic
a

ti
o

n
fe

a
tu

re
 s

e
le

ct
io

n

JS Engine

file.js/eval context

initial features

JavaScript file

Malicious

Benign

predictive features

features + weights

Bayesian classifierBayesian classifier

trainingtraining

filteringfiltering
A

S
T

 c
o

n
te

xt
s benign

contexts

malicious
contexts

loop

c0

string

Fig. 8: ZOZZLE architecture.

dynamic unfolding needs to take place before these contexts
will “emerge” and will be available for analysis.

It is clear from the graph in Figure 7 that, contrary to what
might have been thought, the number of contexts is not a good
indicator of a malicious site. Context counts were calculated
for all malicious URLs from a week of scanning with NOZZLE

and a random sample of benign URLs over the same period.

D. ZOZZLE Overview
Much of ZOZZLE’s design and implementation has in retro-

spect been informed by our experience with reverse engineer-
ing and analyzing real malware found by NOZZLE. Figure 8
illustrates the major parts of the ZOZZLE architecture. At a
high level, the process evolves in three stages: JavaScript
context collection and labeling as benign or malicious, feature
extraction and training of a naı̈ve Baysian classifier, and
finally, applying the classifier to a new JavaScript context to
determine if it is benign or malicious. In the following section,
we discuss the details of each of these stages in turn.
Caveats and limitations: As with any classifier-based tool,
the issue of false negatives is difficult to avoid. In particular,
knowing the list of features used by ZOZZLE, a determined
attacker may be able to design exploits that would not be
detected, especially if ZOZZLE is available as an oracle for
experimentation purposes while the attacker is debugging her
exploit. A weakness of any classifier-based approach that is
easier to circumvent than runtime detection techniques such as
NOZZLE, although we believe it is impossible for an attacker
to remove all informative features from an attack, particularly
JavaScript language constructs required for the exploit to
succeed.

We believe that ZOZZLE is one of several measures that
can be used as part of a defense-in-depth strategy. Moreover,

our experience suggests that in many cases, attackers are slow
to adopt to the changing detection landscape. Indeed, despite
wide availability of obfuscation tools, in our NOZZLE detection
experiments, we still find many sites not using any form
of obfuscation at all, using obvious variable names such as
shellcode, nopsled, etc.
Deployment: Several deployment strategies for ZOZZLE exist.
The most attractive one, we believe, is in-browser deploy-
ment. ZOZZLE has been designed to require only occasional
offline re-training so that classifier updates can be shipped
off to the browser every several days or weeks. The code of
the in-browser detector does not need to change, only the
list of features and weights needs to be sent, similarly to
updating signatures in an anti-virus product. Note that our
detector is designed in a way that can be tightly integrated
into the JavaScript parser, making malware “scoring” part of
the overall parsing process; the only thing that needs to be
maintained as the parse tree (AST) is being constructed is
the set of matching features. This, we believe, will make the
incremental overhead of ZOZZLE processing even lower than
it is now.

Another way to deploy ZOZZLE is as a filter for a more
heavy-weight technique such as NOZZLE or some form of
control- or dataflow integrity [1, 9]. As such, the expected end-
user overhead will be very low, because both the detection rate
of ZOZZLE and the rate of false positives is very low; we do
not necessarily object to the user taking a performance hit in
the case of an actual exploit taking place.

Finally, ZOZZLE is suitable for offline scanning, either in the
case of dynamic web crawling using a web browser, or in the
context of purely static scanning that exposes at least some
part of the JavaScript code to the scanner.

III. IMPLEMENTATION

In this section, we discuss the details of the ZOZZLE imple-
mentation.

A. Training Data Extraction and Labeling

ZOZZLE makes use of a statistical classifier to efficiently
identify malicious JavaScript. The classifier needs training
data to accurately classify JavaScript source, and we describe
the process we use to get that training data here. We start
by augmenting the JavaScript engine in a browser with a
“deobfuscator” that extracts and collects individual fragments
of JavaScript. As discussed above, exploits are frequently
buried under multiple levels of JavaScript eval. Unlike Noz-
zle, which observes the behavior of running JavaScript code,
ZOZZLE must be run on an unobfuscated exploit to reliably
detect malicious code.

While detection on obfuscated code may be possible, ex-
amining a fully unpacked exploit is most likely to result in
accurate detection. Rather than attempt to decipher obfuscation
techniques, we leverage the simple fact that an exploit must
unpack itself to run.

Our experiments presented in this paper involved instru-
menting the Internet Explorer browser, but we could have

7

used a different browser such as Firefox or Chrome instead.
Using the Detours binary instrumentation library [20], we
were able to intercept calls to the Compile function in the
JavaScript engine located in the jscript.dll library. This
function is invoked when eval is called and whenever new
code is included with an <iframe> or <script> tag. This allows
us to observe JavaScript code at each level of its unpacking
just before it is executed by the engine. We refer to each
piece of JavaScript code passed to the Compile function
as a code context. For purposes of evaluation, we write out
each context to disk for post-processing. In a browser-based
implementation, context assessment would happen on the fly.

B. Feature Extraction

Once we have labeled JavaScript contexts, we need to
extract features from them that are predictive of malicious
or benign intent. For ZOZZLE, we create features based on
the hierarchical structure of the JavaScript abstract syntax tree
(AST). Specifically, a feature consists of two parts: a context
in which it appears (such as a loop, conditional, try/catch
block, etc.) and the text (or some substring) of the AST
node. For a given JavaScript context, we only track whether
a feature appears or not, and not the number of occurrences.
To efficiently extract features from the AST, we traverse the
tree from the root, pushing AST contexts onto a stack as we
descend and popping them as we ascend.

To limit the possible number of features, we only extract
features from specific nodes of the AST: expressions and
variable declarations. At each of the expression and variable
declarations nodes, a new feature record is added to that
script’s feature set.

If we use the text of every AST expression or variable
declaration observed in the training set as a feature for the
classifier, it will perform poorly. This is because most of these
features are not informative (that is, they are not correlated
with either benign or malicious training set). To improve
classifier performance, we instead pre-select features from the
training set using the χ2 statistic to identify those features that
are useful for classification. A pre-selected feature is added to
the script’s feature set if its text is a substring of the current
AST node and the contexts are equal. The method we used to
select these features is described in the following section.

C. Feature Selection

As illustrated in Figure 8, after creating an initial feature set,
ZOZZLE performs a filtering pass to select those features that
are most likely to be most predictive. For this purpose, we used
the χ2 algorithm to test for correlation. We include only those
features whose presence is correlated with the categorization
of the script (benign or malicious). The χ2 test (for one degree
of freedom) is described below:

A = malicious contexts with feature

B = benign contexts with feature

C = malicious contexts without feature

D = benign contexts without feature

χ2 =
(A ∗D − C ∗B)2

(A+ C) ∗ (B +D) ∗ (A+B) ∗ (C +D)

We selected features with χ2 ≥ 10.83, which corresponds with
a 99.9% confidence that the two values (feature presence and
script classification) are not independent.

D. Classifier Training

ZOZZLE uses a naı̈ve Bayesian classifier, one of the simplest
statistical classifiers available. When using naı̈ve Bayes, all
features are assumed to be statistically independent. While this
assumption is likely incorrect, the independence assumption
has yielded good results in the past. Because of its simplicity,
this classifier is efficient to train and run.

The probability assigned to label Li for code fragment
containing features F1, . . . , Fn may be computed using Bayes
rule as follows:

P (Li|F1, . . . , Fn) =
P (Li)P (F1, . . . , Fn|Li)

P (F1, . . . , Fn)

Because the denominator is constant regardless of Li we
ignore it for the remainder of the derivation. Leaving out the
denominator and repeatedly applying the rule of conditional
probability, we rewrite this as:

P (Li|F1, . . . , Fn) = P (Li)

n∏
k=1

P (Fk|F1, . . . , Fk−1, Li)

Given that features are assumed to be conditionally indepen-
dent, we can simplify this to:

P (Li|F1, . . . , Fn) = P (Li)

n∏
k=1

P (Fk|Li)

Classifying a fragment of JavaScript requires traversing
its AST to extract the fragment’s features, multiplying the
constituent probabilities of each discovered feature (actually
implemented by adding log-probabilities), and finally multi-
plying by the prior probability of the label. It is clear from
the definition that classification may be performed in linear
time, parameterized by the size of the code fragment’s AST,
the number of features being examined, and the number of
possible labels.

The processes of collecting and hand-categorizing
JavaScript samples and training the ZOZZLE classifier are
detailed in Section IV.

E. Fast Pattern Matching

An AST node contains a feature if the feature’s text is
a substring of the AST node. With a naı̈ve approach, each
feature must be matched independently against the node text.
To improve performance, we construct a state machine for
each context that reduces the number of character comparisons
required. There is a state for each unique character occurring
at each position in the features for a given context.

8

A pseudocode for the fast matching algorithm is shown
in Figure 10. State transitions are selected based on the
next character in the node text. Every state has a bit mask
with bits corresponding to features. The bits are set only for
those features that have the state’s incoming character at that
position. At the beginning of the matching, a bitmap is set to
all ones. This mask is AND-ed with the mask at each state
visited during matching. At the end of matching, the bit mask
contains the set of features present in the node. This process is
repeated for each position in the node’s text, as features need
not match at the start of the node.

Example 2 An example of a state machine used for fast
pattern matching is shown in Figure 9. This string matching
state machine can identify three patterns: alert, append, and
insert. Assume the matcher is running on input text appert.
During execution, a bit array of size three, called the matched
list, is kept to indicate the patterns that have been matched up
to this point in the input. This bit array starts with all bits set.
From the leftmost state we follow the edge labeled with the
input’s first character, in this case an a.

The match list is bitwise-anded with this new state’s bit
mask of 110. This process is repeated for the input charac-
ters p, p, e. At this point, the match list contains 010 and the
remaining input characters are r, t, and null (also notated
as \0). Even though a path to an end state exists with edges
for the remaining input characters, no patterns will be matched.
The next character consumed, an r, takes the matcher to a state
with mask 001 and match list of 010. Once the match list is
masked for this state, no patterns can possibly be matched.
For efficiency, the matcher terminates at this point and returns
the empty match list.

The maximum number of comparisons required to match
an arbitrary input with this matcher is 17, versus 20 for naı̈ve
matching (including null characters at the ends of strings).
The worst-case number of comparisons performed by the
matcher is the total number of distinct edge inputs at each
input position. The sample matcher has 19 edges, but at input
position 3 two edges consume the same character (’e’), and
at input position 6 two edges consume the null character. In
practice, we find that the number of comparisons is reduced
significantly more than for this sample, due to the large number
of features. This is because of the pigeonhole principle. �

For a classifier using 100 features, a single position in
the input text would require 100 character comparisons with
naı̈ve matching. Using the state machine approach, there can
be no more than 52 comparisons at each string position (36
alphanumeric characters and 16 punctuation symbols), giving
a reduction of nearly 50%. In practice there are even more
features, and input positions do not require matching against
every possible input character.

Figure 11 clearly shows the benefit of fast pattern matching
over a naive matching algorithm. The graph shows the average
number of character comparisons performed per-feature using
both our scheme and a naive approach that searches an
AST node’s text for each pattern individually. As can be
seen from the figure, the fast matching approach has far

110

001

010

001

100

010

001

011

100 100 100

010 010

001 001

111
a

i
n s

e

e

r
t

p p
n

d

l

e r t

011

100\0

\0

\0

Fig. 9: Fast feature matching illustrated.
matchList← 〈1, 1, . . . , 1〉
state← 0
for all c in input do
state← matcher.getNextState(state, c)
matchList← matchList ∧matcher.getMask(state)
if matchList〈0, 0, . . . , 0〉 then

return matchList
end if

end for
return matchList

Fig. 10: Fast matching algorithm.

0

5

10

15

20

25

30

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
,0

0
0

1
,1

0
0

1
,2

0
0

1
,3

0
0

1
,4

0
0

1
,5

0
0

M
ill

io
n

 c
o

m
p

ar
is

o
n

s
p

e
r

fe
at

u
re

Naïve Matching

Fast Matching

Fig. 11: Comparisons required per-feature with naı̈ve vs. fast pattern
matching. The number of features is shown on the x axis.

fewer comparisons, decreasing asymptotically as the number
of features approaches 1,500.

IV. METHODS

In order to train and evaluate ZOZZLE, we created a col-
lection of malicious and benign JavaScript samples to use as
training data and for evaluation.

A. Gathering Malicious Samples

To gather the results for Section V, we first dynamically
scanned URLs with a browser running both NOZZLE and
the ZOZZLE JavaScript deobfuscator. In this configuration,
when NOZZLE detects a heap spraying exploit, we record the
URL and save to disk all JavaScript contexts seen by the
deobfuscator. All recorded JavaScript contexts are then hand-
examined to identify those that contain any malware elements
(shellcode, vulnerability, or heap-spray).

Malicious contexts can be sorted efficiently by first group-
ing by their md5 hash value. This dramatically reduces
the required effort because of the lack of exploit diversity

9

Feature

try : unescape
loop : spray
loop : payload
function : addbehavior
string : 0c

Fig. 12: Examples of hand-picked features used in our experiments.

explained first in Section II and relatively few identifier-
renaming schemes being employed by attackers. For exploits
that do appear with identifier names changed, there are still
usually some identifiers left unchanged (often part of the
standard JavaScript API) which can be identified using the
grep utility. Finally, hand-examination is used to handle the
few remaining unsorted exploits. Using a combination of
these techniques, 919 deobfuscated malicious contexts were
identified and sorted in several hours. The frequency of each
exploit type observed is shown in Figure 2.

B. Gathering Benign Samples

To create a set of benign JavaScript contexts, we extracted
JavaScript from the Alexa.com top 50 URLs using the ZOZZLE

deobfuscator. The 7,976 contexts gathered from these sites
were used as our benign dataset.

C. Feature Selection

To evaluate ZOZZLE, we partition our malicious and benign
datasets into training and evaluation data and train a classifier.
We then apply this classifier to the withheld samples and
compute the false positive and negative rates. To train a
classifier with ZOZZLE, we first need a define a set of features
from the code. These features can be hand-picked, or automat-
ically selected (as described in Section III) using the training
examples. In our evaluation, we compare the performance of
classifiers built using hand-picked and automatically selected
features.

The 89 hand-picked features were selected based on ex-
perience and intuition with many pieces of malware detected
by NOZZLE and involved collecting particularly “memorable”
features frequently repeated in malware samples.

Automatically selecting features typically yields many more
features as well as some features that are biased toward
benign JavaScript code, unlike hand-picked features that are all
characteristic of malicious JavaScript code. Examples of some
of the hand-picked features used are presented in Figure 12.

For comparison purposes, samples of the automatically
extracted features, including a measure of their discriminating
power, are shown in Figure 13. The middle column shows
whether it is the presence of the feature (X) or the absence
of it (7) that we are matching on. The last column shows the
number of malicious (M) and benign (B) contexts in which
they appear in our training set.

In addition to the feature selection methods, we also varied
the types of features used by the classifier. Because each token
in the Abstract Syntax Tree (AST) exists in the context of a
tree, we can include varying parts of that AST context as part

Feature Present M : B

function : anonymous X 1 : 4609
try : newactivexobject(”pdf.pdfctrl”) X 1309 : 1
loop : scode X 1211 : 1
function : $(this) X 1 : 1111
if : ”shel” + ”l.ap” + ”pl” + ”icati” + ”on” X 997 : 1
string : %u0c0c%u0c0c X 993 : 1
loop : shellcode X 895 : 1
function : collectgarbage() X 175 : 1
string : #default#userdata X 10 : 1
string : %u 7 1 : 6

Fig. 13: Sample of automatically selected features and their discrim-
inating power as a ratio of likelihood to appear in a malicious or
benign context.

Features Hand-Picked Automatic Features

flat 95.45% 99.48% 948
1-level 98.51% 99.20% 1,589
n-level 96.65% 99.01% 2,187

Fig. 14: Classifier accuracy for hand-picked and automatically se-
lected features.

Features Hand-Picked Automatic
False Pos. False Neg. False Pos. False Neg.

flat 4.56% 4.51% 0.01% 5.84%
1-level 1.52% 1.26% 0.00% 9.20%
n-level 3.18% 5.14% 0.02% 11.08%

Fig. 15: False positives and false negatives for flat and hierarchical
features using hand-picked and automatically selected features.

of the feature. Flat features are simply text from the JavaScript
code that is matched without any associated AST context. We
should emphasize that flat features are typically used in various
text classification schemes. What distinguishes our work is
that, through the use of hierarchical features, we are taking
advantage of the contextual information given by the code
structure to get better precision.

Hierarchical features, either 1- or n-level, contain a certain
amount of AST context information. For example, 1-level
features record whether they appear within a loop, function,
conditional, try/catch block, etc. Intuitively, a variable called
shellcode declared or used right after the beginning of a
function is perhaps less indicative of malicious intent than
a variable called shellcode that is used with a loop, as is
common in the case of a spray.

For n-level features, we record the entire stack of AST
contexts such as

〈a loop,within a conditional,within a function, . . .〉

The depth of the AST context presents a tradeoff between
accuracy and performance, as well as between false positives
and false negatives. We explore these tradeoffs in detail in
Section V.

V. EVALUATION

In this section, we evaluate the effectiveness of ZOZZLE

using the benign and malicious JavaScript samples described
in Section IV. The purpose of this section is to answer the
following questions:

10

0%

1%

2%

3%

4%

0% 5% 10% 15% 20% 25%

Fa
ls

e
 P

o
si

ti
ve

 R
at

e

Training Set Fraction

Hand-Picked

Automatic

0%

5%

10%

15%

20%

25%

0% 5% 10% 15% 20% 25%

Fa
ls

e
 N

e
ga

ti
ve

 R
at

e

Training Set Fraction

Hand-Picked

Automatic

Fig. 17: False positive and false negative rates as a function of training set size.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0 300 600 900 1200 1500

Fa
ls

e
 P

o
si

ti
ve

 R
at

e

Features

0%

5%

10%

15%

20%

25%

0 300 600 900 1200 1500
Fa

ls
e

 N
e

ga
ti

ve
 R

at
e

Features

Fig. 18: False positive and false negative rates as a function of feature set size.

95%

96%

97%

98%

99%

100%

0% 5% 10% 15% 20% 25%

A
cc

u
ra

cy

Training Set Fraction

Hand-Picked

Automatic

Fig. 16: Classification accuracy as a function of training set size for
hand-picked and automatically selected features.

• How effective is ZOZZLE at correctly classifying both
malware and benign JavaScript?

• What benefit do we get by including context information
from the abstract syntax tree in creating classifiers?

• In terms of the amount of malware detected, how does
ZOZZLE compare with other approaches, such as NOZZLE?

• What is the performance overhead of including ZOZZLE

in a browser?

To obtain the experimental results presented in
this section, we used an HP xw4600 workstation
(Intel Core2 Duo E8500 3.16 Ghz, dual processor, 4 Gigabytes
of memory), running Windows 7 64-bit Enterprise.

A. ZOZZLE Effectiveness: False Positives and False Negatives

Figure 14 shows the overall classification accuracy of ZOZ-
ZLE when evaluated using our malicious and benign JavaScript
samples1. The accuracy is measured as the number of suc-
cessful classifications divided by total number of samples. In
this case, because we have many more benign samples than
malicious samples, the overall accuracy is heavily weighted
by the effectiveness of correctly classifying benign samples.

In the figure, the results are sub-divided first by whether the
features are selected by hand or using the automatic technique
described in Section III, and then sub-divided by the amount
of context used in the classifier (flat, 1-level, and n-level).

The table shows that overall, automatic feature selection
significantly outperforms hand-picked feature selection, with
an overall accuracy above 99%. Second, we see that while
some context helps the accuracy of the hand-picked features,
overall, context has little impact on the accuracy of automat-
ically selected features. We also see in the fourth column
the number of features that were selected in the automatic
feature selection. As expected, the number of features selected
with the n-level classifier is significantly larger than the other
approaches.

Figure 15 expands on the above results by showing the false
positive and false negative rates for the different feature se-
lection methods and levels of context. The rates are computed

1Unless otherwise stated, for these results 25% of the samples were used
for classifier training and the remaining files were used for testing. Each
experiment was repeated five times on a different randomly-selected 25% of
hand-sorted data.

11

0

2

4

6

8

10

12

14

16

18

20

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

1
0
,0
0
0

1
2
,0
0
0

1
4
,0
0
0

1
6
,0
0
0

1
8
,0
0
0

2
0
,0
0
0

C
la

ss
if

ic
at

io
n

 T
im

e
 (

m
s)

Fig. 20: Classification time as a function of JavaScript file size. File size in bytes is shown on the x axis and the classification time in ms
is shown on the y axis.

69%

Zozzle

SafeBrowsing
17%

13%

Nozzle

Fig. 19: A Venn diagram showing the quantitative relationship
between ZOZZLE, NOZZLE, and Google SafeBrowsing. The callout
at the bottom of the figure shows the percentage of NOZZLE findings
that are covered by SafeBrowsing (80%).

as a fraction of malicious and benign samples, respectively.
We see from the figure that the false positive rate for all

configurations of the hand-picked features is relatively high
(1.5-4.5%), whereas the false positive rate for the automat-
ically selected features is nearly zero. The best case, using
automatic feature selection and 1-level of context, has no
false positives in any of the randomly-selected training and
evaluation subsets. We note, however, that the differences
between the automatic false positive rates are so small that
the variation (0% versus 0.02%) may be the result of noise
due to the randomness of training set selection.

In contrast to the lower false positive rates, the false negative
rates of the automatically selected features are higher than they
are for the hand-picked features. The insight we have is that
the automatic feature selection selects many more features,
which improves the sensitivity in terms of false positive rate,
but at the same time reduces the false negative effectiveness
because extra benign features can sometimes mask malicious
intent. We see that trend manifest itself among the alternative

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0

30
0

60
0

90
0

1,
2
00

1,
5
0
0

C
la

ss
if

ie
r

A
cc

u
ra

cy

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Throughput

Accuracy

Fig. 21: Classifier throughput and accuracy as a function of the
number of features, using 1-level classification with .25 of the training
set size.

amounts of context in the automatically selected features. The
n-level classifier has more features and a higher false negative
rate than the flat or 1-level classifiers. Since we want to achieve
a very low false positive rate with a moderate false negative
rate, and the 1-level classifier provided the best false positive
rate in these experiments, in the remainder of this section,
we consider the effectiveness of the 1-level classifier in more
detail.

Training set size: To understand the impact of training set
size on accuracy and false positive/negative rates, we trained
classifiers using between 1% and 25% of our benign and
malicious datasets. For each training set size, ten classifiers
were trained using different randomly selected subsets of the
dataset for both hand-picked and automatic features. These
classifiers were evaluated with respect to overall accuracy in
Figure 16 and false positives/negatives in Figure 17.

The figures show that training set size does have an impact
on the overall accuracy and error rates, but that a relative
small training set (< 10% of the overall data set) is sufficent
to realize most of the benefit. The false positive rate using
automatic feature selection benefits the most from additional

12

training data, which is explained by the fact that this classifier
has many more features and benefits from more examples to
fully train.
Feature set size: To understand the impact of feature set size
on classifier effectiveness, we trained the 1-level automatic
classifier, sorted the selected features by their χ2 value, and
picked only the top N features. For this experiment (due to the
fact that the training set used is randomly selected), there were
a total of 1,364 features originally selected during automatic
selection.

Figure 18 shows how the false positive and false negative
rates vary as we change the size of the feature set to contain
between 50 and 1300 features. The figures show that both the
false positive and false negative rates are significantly higher
and variable with small feature sets but after approximately
200 features, both rates steadily drop until we have approxi-
mately 500 features, at which point the rates stabilize. For both
rates, using more than 600 features has little overall effect.

B. Comparison with Other Techniques

In this section, we compare the effectiveness of ZOZZLE

to that of other malware detection tools, including NOZZLE

and Google’s Safe Browsing API [14]. SafeBrowsing is a
frequently updated blacklist of malicious sites that is used
by Google Chrome and Mozilla Firefox to warn users of
potentially malicious URLs they might be visiting. The list
is distributed in the form of hash values, with original URLs
not actually being exposed.

Our approach is to consider a collection of benign and
malicious URLs and determine which of these is flagged as
malicious by the different detection tools.

To compute the relative numbers of detected URLs for NOZ-
ZLE, ZOZZLE, and SafeBrowsing, we first take the total number
of NOZZLE detections from our dynamic crawler infrastructure.
It is infeasible to run ZOZZLE on every URL visited by the
crawler on our single test machine (collecting deobfuscated
JavaScript is the bottleneck here), so instead we use a random
sample (4% of all crawled URLs) in order to estimate the
number of ZOZZLE and SafeBrowsing detections for a single
day. None of the randomly selected URLs were detected by
NOZZLE, so we also ran ZOZZLE on all the URLs detected by
NOZZLE. This gives us the exact number of URLs detected
by both techniques. Dividing this count by the approximate
number of ZOZZLE detections (ZOZZLE detections divided by
sample rate) for the whole set of URLs gives us an estimate as
to what fraction of ZOZZLE-detected URLs are also detected by
NOZZLE. This same procedure was repeated for SafeBrowsing.

Our results are shown in Figure 19. This diagram illustrates
the relative numbers of URLs detected by NOZZLE, ZOZZLE,
and Google SafeBrowsing. We see that SafeBrowsing detects a
large fraction of the URLs detected by NOZZLE, while ZOZZLE

detects them all. SafeBrowsing detects less than half of the
URLs found by ZOZZLE, but we have hand-verified a large
number of these and have found that they are not false posi-
tives. ZOZZLE detects a large fraction of SafeBrowsing’s URLs,
but not all. Some URLs are flagged by SafeBrowsing as being

part of a malware network, even if these URLs do not contain
an actual exploit. Some URLs were flagged by the client-
side SafeBrowsing tool, but Google’s diagnostics page for the
URL indicated that it was not malicious, which we believe
can result from hash conflicts in the SafeBrowsing database
sent to clients. Finally, there are legitimately malicious URLs
detected by SafeBrowsing and not by ZOZZLE. Some of these
are missed detections, while others are exploits that do not
expose themselves to all browsers.

C. Classifier Performance

Figure 20 shows the classification time as a function of
the size of the file, ranging up to 10 KB. We used automatic
feature selection, a 1-level classifier trained on .25 of the hand-
sorted dataset with no hard limit on feature counts to obtain
this chart. This evaluation was performed on a classifier with
over 4000 features, and represents the worst case performance
for classification. We see that for a majority of files, clas-
sification can be performed in under 4ms. Moreover, many
contexts are in fact eval contexts, which are generally smaller
than JavaScript files downloaded from the network. In the case
of eval contexts such as that, the classification overhead is
usually 1 ms and below.

Figure 21 displays the overhead as a function of the number
of classification features we used and compares it to the
average parse time of .86 ms. Despite the fast feature matching
algorithm presented in Section III, having more features to
match against is still quite costly. As a result, we see the
average classification time grow significantly, albeit linearly,
from about 1.6 ms for 30 features to over 7 ms for about 1,300
features. While these numbers are from our prototype imple-
mentation, we believe that ZOZZLE’s static detector has a lot
of potential for fast on-the-fly malware identification.

VI. RELATED

Detection and prevention of drive-by-download attacks has
been receiving a lot of attention over the last few years. Some
of the methods have been incorporated into browser plug-ins,
intrusion detection and prevention systems or client honeypots.
This section focuses on the underlying techniques as opposed
to the means by which they are deployed. We first review
related work on detection of malicious web pages followed
by a brief review on specific protection approaches.

A. Detection

High-interaction client honeypots have been at the forefront
of research on drive-by-download attacks. Since they were first
introduced in 2005, various studies have been published [26,
33, 39, 45–47]. High-interaction client honeypots drive a vul-
nerable browser to interact with potentially malicious web
page and monitor the system for unauthorized state changes,
such as new processes being created. Similar to ZOZZLE, they
are capable to detect zero-days, but they are known to miss
attacks. For a client honeypot that monitors the effect of a
successful attack, the attack needs to succeed. As such, a client

13

honeypot that is not vulnerable to a specific attack is unable to
detect the attack (e.g. a web page that attacks Firefox browser
cannot be detected by a high-interaction client honeypot that
runs Internet Explorer.) ZOZZLE mines JavaScript features that
are indiscriminative of the attack target and therefore does not
have this limitation.

The detection of drive-by-download attacks can also occur
through the analysis of the content retrieved from the web
server. When captured at the network layer or through a static
crawler, the content of malicious web pages is usually highly
obfuscated opening the door to static feature based exploit
detection [13, 33, 38, 42, 43]. While these approaches, among
others, consider static JavaScript features, ZOZZLE is the first
to utilize hierarchical features extracted from ASTs. However,
all produce some false positives and therefore are usually
employed as a first stage to follow a more in-depth detection
method, such as NOZZLE or high-interaction client honeypots.

Recent work by Canali et al. [8] presents a lightweight
static filter for malware detection called Prophiler. It com-
bines HTML-, JavaScript-, and URL-based features into one
classifier that is able to quickly discard benign pages. While
their approach has elements in common with ZOZZLE, there
are also differences. First, ZOZZLE focuses on classifying
pages based on unobfuscated JavaScript code by hooking
into the JavaScript engine enty point, whereas Prophiler ex-
tracts its features from the obfuscated code and combine
them with HTML- and URL-based features into one classi-
fier. Second, ZOZZLE applies an automated feature extraction
mechanisms that selects hierarchical features from the AST,
whereas Prophiler hand-picks a variety of statistical and lexical
JavaScript features including features from a generated AST.
Their feature “presence of decoding routines ” seems to utilize
loop context information of long strings and is recognized as
an effective feature correlated with malicious code by ZOZZLE

as well. However, we should emphasize that ZOZZLE more
generically extracts context-related information from the AST
in an automated fashion. Third, the emphasis of ZOZZLE is on
very low false positive rates, which sometimes imply higher
false negative rates, whereas Prophiler has a more balanced
approach to both. Fourth, the focus of ZOZZLE is on heap
spraying detection, whereas Prophiler is more general. More
narrow focus allows us to train ZOZZLE more precisely, using
NOZZLE results, while perhaps not finding as many malicious
sites as Prophiler is capable of detecting. We believe that there
is room for combining interesting aspects of both tools.

Besides static features focusing on HTML and JavaScript,
shellcode injection exploits also offer points for detection.
They usually consist of several parts: the NOP sled, shellcode,
the spray, and a vulnerability. Existing techniques such as
Snort [36] use pattern matching to identify attacks in a
database. This approach most likely fails to detect attacks
that are not already in the database. Polymorphic attacks that
vary shellcode on each exploit attempt can avoid pattern-based
detection unless improbable properties of shellcode are used
to detect such attacks, as in Polygraph [29]. Like ZOZZLE,
Polygraph utilizes a naive bayes classifier, but only applies it

to the detection of shellcode.
Abstract Payload Execution (APE) by Toth and

Kruegel [44], STRIDE by Akritidis et al. [3, 31], and
NOZZLE by Ratanaworabhan, Livshits and Zorn [34] all focus
on analysis of the shellcode and NOP sled used by a heap
spraying attack. Such techniques can detect heap sprays with
low false positive rates, but incur higher runtime overhead
than is unacceptable for always-on deployment in a browser
(10-15% is fairly common). As mentioned earlier, ZOZZLE

could be used to identify potential sprays and enable one
of these detection tools when suspicious code is detected to
dramatically reduce the overhead of spray detection when
visiting benign sites.

Dynamic features have been the focus of several groups.
Nazario, Buescher, and Song propose systems that detect
attacks on scriptable ActiveX components [7, 28, 41]. They
capture JavaScript interactions — either by instrumenting
or simulating a browser — and use vulnerability specific
signatures to detect attacks (e.g. method foo with a long
first parameter on vulnerable ActiveX component bar.) This
method is very effective in detecting attacks due to the relative
homogeneous characteristic of the attack landscape. However,
while they are effective in detecting known existing attacks on
ActiveX components, they fail to identify unseen attacks, or
those that do not involve ActiveX components, which ZOZZLE

is able to detect.
Cova et al. present a system JSAND that conducts classi-

fication based on static and dynamic features [10]. In this
system, potentially malicious JavaScript is emulated to de-
termine runtime characteristics around deobfuscation, envi-
ronment preparation, and exploitation, such as the number
of bytes allocated through string operations. These features
are trained and evaluated with known good and bad URLs.
Results show 0% false positives and 0.2% false negative
rate. ZOZZLE’s approach is similar, but has some distinct
differences. ZOZZLE only considers AST features from the
JavaScript that is compiled within the browser whereas JSAND
extracts manually selected runtime features, such as number of
specific shellcode strings. ZOZZLE’s feature selection is entirely
automated.

Karanth et al. also attempt to identify malicious JavaScript
based on features present in the code [21]. Like us, they
use known malicious and benign JavaScript files and train
a classifier based on features present. They show that their
technique can detect malicious JavaScript with high accuracy
and that, over a period of four months, they were able to detect
a previously unknown zero-day vulnerability. Unlike our work,
they use a set of 34 hand-picked features for training and
classification. While we use an off-the-shelf nave Bayesian
classifier, their ranking algorithm is more specialized for their
task. Their approach generates a precision of 100% with a
recall up to about 70%, with the precision falling off after
that. Overall, our approach has a lower false positive and false
negative rate than theirs.

As mentioned above, some approaches chose to emulate a
browser (such as JSAND or Nazario’s PhoneyC [28]) whereas
others use instrumented versions of the browser, such as ZOZ-

14

ZLE and Song’s system [41]. Both approaches have advantages
and disadvantages. Emulation, for instance, can be used to
impersonate different browser personalities, but could also
be detected by malicious web pages to evade the system as
illustrated by Ruef as well as Hoffmann [16, 37]. Usually the
implementation approach is not a design limitation of the
method. Conceptually one method can be implemented on
an emulated or instrumented platform. However, the imple-
mentation choice does need to be taken into account when
considering the false negative rate as this design choice may
influence this detection aspect.

B. Protection

Besides detection, protection-specific methods are pre-
sented. For instance, while ZOZZLE focuses on detecting ma-
licious JavaScript, other techniques take different approaches.
Recall that heap spraying requires an additional memory cor-
ruption exploit, and one method of preventing a heap-spraying
attack is to ignore the spray altogether and prevent or detect
the initial corruption error. Techniques such as control flow
integrity [1], write integrity testing [2], data flow integrity [9],
and program shepherding [22] take this approach. Detecting all
such possible exploits is difficult and, while these techniques
are promising, their overhead has currently prevented their
widespread use.

Numerous research efforts are under way to directly protect
the client application. BrowserShield, for instance, defuses
malicious JavaScript at run-time by rewriting web pages
and any embedded scripts into safe equivalents [35]. XSS-
GUARD [6] proposes techniques to learn allowed scripts from
unintended scripts. The allowed scripts are then white-listed
to filter out unintended scripts at runtime. ConScript aims
to use aspects to restrict how JavaScript can interact with
its environment and the surrounding page [23]. Noncespaces,
XSS Auditor, or “script accenting,” make changes to the web
browser that make it difficult for an adversary’s script to run
to avoid cross-site scripting attacks [5, 15, 27]. ZOZZLE can
operate or be combined with one of these tools to provide
protection to the end user from malicious JavaScript.

Protection mechanisms that do not involve JavaScript have
also been explored, such as the ClearView system [30]. This
research protects commercial off-the-shelve (COTS) software
by detecting attacks in a collaborative environment and auto-
matically applying generated patches to prevent such attacks in
the future. Application of this method on the Firefox browser
serves as a proof-of-concept. Anagnostakis et al. use anomaly
detection and shadow honeypots to protect, among others,
client applications, such as a web browser [4]. Before the web
browser is permitted to process the requested data, suspicious
data is forwarded to the shadow honeypot, an instrumented
browser that detects memory violation attacks. If no attack is
detected, the data is forwarded to the end user; if an attack
is detected, the data is dropped and the end user effectively
protected. A similar approach that uses execution-based web
content analysis in disposable virtual machines is presented
by Moshchuk et al. [25]. ZOZZLE could operate in a similar

shellcode = unescape("%u9090%u9090%u54EB…");
var memory = [];
var spraySize = "548864" - shellcode.length * "2";
var nop = unescape("%u0c0c%u0c0c");
while (nop.length < spraySize / "2")

{
nop += nop;

}
var nops = nop.substring("0", spraySize / "2");
delete nop;
for(i = "0"; i < "270"; i++)

{
memory[i] = nops + nops + shellcode;

}
function payload()

{
var body =
document.createElement("BODY");
body.addBehavior("#default#userD
ata");
document.appendChild(body);

try

{
for(i = "0"; i < "10"; i++)

{
body.setAttribute("s", window);

}

}
catch(e)
{
}
window.status += "";

}

document.getElementById("bo").onclick();

 shellcode

spray

exploit

Fig. 22: Colored malware sample.

fashion with very little runtime overhead.
Some existing operating systems also support mechanisms,

such as Data Execution Prevention (DEP) [24], which prevent
a process from executing code on specific pages in its address
space. Implemented in either software or hardware (via the
no-execute or “NX” bit), execution protection can be applied
to vulnerable parts of an address space, including the stack
and heap. With DEP turned on, code injections in the heap
cannot execute.

While DEP will prevent many attacks, we believe that
ZOZZLE is complementary to DEP for the following reasons.
First, security benefits from defense-in-depth. For example,
attacks that first turn off DEP have been published, thereby
circumventing its protection [40]. Second, compatibility issues
can prevent DEP from being used. Despite the presence of
NX hardware and DEP in modern operating systems, existing
commercial browsers, such as Internet Explorer 7, still ship
with DEP disabled by default [19]. Third, runtime systems
that perform just-in-time (JIT) compilation may allocate JITed
code in the heap, requiring the heap to be executable.

VII. FUTURE WORK

We believe that much remains to be done in the area of
precise classification of JavaScript, with ZOZZLE paving the
way for the following major areas of future work.

A. Automatic Script Analysis and Script “Coloring”

ZOZZLE can be extended to classify at a finer granularity
than entire scripts. A trained classifier could be used to identify

15

the malicious components of a script. This could be taken a
step further with a specially-trained classifier to distinguish be-
tween the components of an attack: the shellcode, heap spray,
vulnerability, and obfuscation. This second, more powerful
approach requires hand-labeled data. Our preliminary results
are promising, which can be seen in Figure 22. This capability
demonstrates the enormous power of source-level analysis
and classification. For binary malware reverse-engineering and
analysis this level of precision is unprecedented. With further
work the process of annotating collected exploits could be
automated by extending Nozzle to trace heap sprays back to
JavaScript source lines.

B. Automatic Malware Clustering

Using the same features extracted for classification, it is
possible to automatically cluster attacks into groups. There
are two possible approaches that exist in this space: supervised
and unsupervised clustering.

Supervised clustering would consist of hand-categorizing
attacks, which has actually already been done for about 1,000
malicious contexts, and assigning new scripts to one of these
groups. Unsupervised clustering would not require the initial
sorting effort, and is more likely to successfully identify
new, common attacks. It is likely that feature selection would
be an ongoing process; selected features should discriminate
between different clusters, and these clusters will likely change
over time.

C. Substring Feature Selection

For the current version of ZOZZLE, automatic feature se-
lection only considers the entire text of an AST node as a
potential feature. While simply taking all possible substrings
of this and treating those as possible features as well may
seem reasonable, the end result is a classifier with many
more features and little (if any) improvement in classification
accuracy.

An alternative approach would be to treat certain types of
AST nodes as “divisible” when collecting candidate features.
If the entire node text is not a good discriminative feature, its
component substrings can be selected as candidate features.
This avoids introducing substring features when the full text
is sufficiently informative, but allows for simple patterns to be
extracted from longer text (such as %u or %u0c0c) when they
are more informative than the full string. Not all AST nodes
are suitable for subdivision, however. Fragments of identifiers
don’t necessarily make sense, but string constants and numbers
could still be meaningful when split apart.

D. Feature Flow

At the moment, features are extracted only from the text
of the AST nodes in a given context. This works well for
whole-script classification, but has yielded more limited results
for fine grained classification. To prevent a particular feature
from appearing in a particularly informative context (such as
COMMENT appearing inside a loop, a component the Aurora

exploit [32]) an attacker can simply assign this string to a
variable outside the loop and reference the variable within the
loop. The idea behind feature flow is to keep a simple lookup
table for identifiers, where both the identifier name and its
value are used to extract features from an AST node.

By ignoring scoping rules and loops, we can get a reason-
able approximation of the features present in both the identi-
fiers and values within a given context with low overhead. This
could be taken one step further by emulating simple operations
on values. For example, if two identifiers set to strings are
added, the values of these strings could be concatenated and
then searched for features. This would prevent attackers from
hiding common shellcode patterns using concatenation.

VIII. CONCLUSIONS

This paper presents ZOZZLE, a mostly static malware de-
tector for JavaScript code. ZOZZLE is a versatile technology
that may be deployed in the context of a commercial browser,
staged with a more costly runtime detector like NOZZLE,
or used standalone, for offline URL scanning. Much of the
novelty of ZOZZLE comes from its hooking into the the
JavaScript engine of a browser to get the final, expanded
version of JavaScript code to address the issue of deob-
fuscation. Compared to other classifier-based tools, ZOZZLE

uses contextual information available in the program Abstract
Syntax Tree (AST) to perform fast, scalable, yet precise
malware detection.

This paper contains an extensive evaluation of our tech-
niques. We evaluated ZOZZLE in terms of performance and
malware detection rates (both false positives and false nega-
tives) using thousands of pre-categorized code samples. We
conclude that the most accurate classifier did not produce any
false positives, implying a false positive rate of below 0.01%.
Despite this high accuracy, the classifier is very fast, with a
throughput at over 1 MB of JavaScript code per second.

We see tools like ZOZZLE deployed both in the browser
to provide “first response” for users affected by JavaScript
malware and used for offline dynamic crawling, to contribute
to the creation and maintanence of various blacklists.

ACKNOWLEDGMENTS

This work would not have been possible without the help
of many people, including Sarmad Fayyaz, David Felstead,
Michael Gamon, Darren Gehring, Rick Gutierrez, Engin
Kirda, Jay Stokes, and Ramarathnam Venkatesan. We espe-
cially thank Rick Bhardwaj for working closely with malware
samples to help us understand their properties in the wild.

REFERENCES

[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the Conference on Computer and Commu-
nications Security, pages 340–353, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with WIT. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 263–277, 2008.

16

[3] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. G. Anag-
nostakis. STRIDE: Polymorphic sled detection through instruction
sequence analysis. In R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura,
editors, Proceedings of Security and Privacy in the Age of Ubiquitous
Computing, pages 375–392. Springer, 2005.

[4] K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. Keromytis. Detecting targeted attacks using shadow honeypots.
In Proceedings of the USENIX Security Symposium, 2005.

[5] D. Bates, A. Barth, and C. Jackson. Regular expressions considered
harmful in client-side XSS filters. International World Wide Web
Conference, 2010.

[6] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks. In Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008.

[7] A. Buescher, M. Meier, and R. Benzmueller. MonkeyWrench -
boesartige webseiten in die zange genommen. In Deutscher IT-
Sicherheitskongress, Bonn, 2009.

[8] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A fast filter
for the large-scale detection of malicious web pages. Technical Report
2010-22, University of California at Santa Barbara, 2010.

[9] M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-
flow integrity. In Proceedings of the Symposium on Operating Systems
Design and Implementation, pages 147–160, 2006.

[10] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-
download attacks and malicious JavaScript code. In Proceedings of the
International World Wide Web Conference, Raleigh, NC, April 2010.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceedings of
the USENIX Security Symposium, January 1998.

[12] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection
attacks. In Proceedings of the Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 88–106, 2009.

[13] B. Feinstein and D. Peck. Caffeine Monkey: Automated collection,
detection and analysis of malicious JavaScript. In Proceedings of Black
Hat USA, Las Vegas, 2007.

[14] Google, Inc. Google safe browsing API. http://code.google.com/apis/
safebrowsing/.

[15] M. V. Gundy and H. Chen. Noncespaces: using randomization to
enforce information flow tracking and thwart cross-site scripting attacks.
Proceedings of the Annual Network & Distributed System Security
Symposium, 2009.

[16] B. Hoffman. Circumventing automated JavaScript analysis. In Proceed-
ings of Black Hat USA, Las Vegas, 2008.

[17] F. Howard. Malware with your mocha: Obfuscation and anti-
emulation tricks in malicious JavaScript. http://www.sophos.com/
security/technical-papers/malware with your mocha.pdf, Sept. 2010.

[18] M. Howard. Address space layout randomization in Windows
Vista. http://blogs.msdn.com/b/michael howard/archive/2006/05/26/
address-space-layout-randomization-in-windows-vista.aspx, May 2006.

[19] M. Howard. Update on Internet Explorer 7, DEP, and Adobe
software. http://blogs.msdn.com/michael howard/archive/2006/12/12/
update-on-internet-explorer-7-dep-and-adobe-software.aspx, 2006.

[20] G. Hunt and D. Brubacher. Detours: Binary interception of Win32
functions. In Proceedings of the USENIX Windows NT Symposium,
pages 135–143, 1999.

[21] S. Karanth, S. Laxman, P. Naldurg, R. Venkatesan, J. Lambert, , and
J. Shin. Pattern mining for future attacks. Technical Report MSR-TR-
2010-100, Microsoft Research, 2010.

[22] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution
via program shepherding. In Proceedings of the USENIX Security
Symposium, pages 191–206, 2002.

[23] L. Meyerovich and B. Livshits. ConScript: Specifying and enforcing
fine-grained security policies for Javascript in the browser. In IEEE
Symposium on Security and Privacy, May 2010.

[24] Microsoft Corporation. Data execution prevention. http://technet.
microsoft.com/en-us/library/cc738483.aspx, 2003.

[25] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy.
SpyProxy: execution-based detection of malicious web content. In
Proceedings of the USENIX Security Symposium, Boston, 2007. ACM.

[26] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy. A crawler-
based study of spyware on the web. In Proceedings of the Network and
Distributed System Security Symposium, San Diego, 2006. The Internet
Society.

[27] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust
basis for cross-site scripting defense. In Proceedings of the Network and
Distributed System Security Symposium, 2009.

[28] J. Nazario. PhoneyC: A virtual client honeypot. In Proceedings of
the Usenix Workshop on Large-Scale Exploits and Emergent Threats,
Boston, 2009.

[29] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically gener-
ating signatures for polymorphic worms. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 226–241, 2005.

[30] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. C. Rinard. Automatically patching
errors in deployed software. In Proceedings of the 22nd Symposium
on Operating Systems Principles (22nd SOSP’09), Operating Systems
Review (OSR), pages 87–102, Big Sky, MT, Oct. 2009.

[31] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Emulation-
based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the Symposium on Recent Advances in Intrusion Detection,
pages 87–106, 2007.

[32] Praetorian Prefect. The “aurora” IE exploit used against
Google in action. http://praetorianprefect.com/archives/2010/01/
the-aurora-ie-exploit-in-action/, Jan. 2010.

[33] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your
iFRAMEs point to us, 2008. Available from http://googleonlinesecurity.
blogspot.com/2008/02/all-your-iframe-are-point-to-us.html; accessed
on 15 Feburary 2008.

[34] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against
heap-spraying code injection attacks. In Proceedings of the USENIX
Security Symposium, Montreal, Canada, August 2009.

[35] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browser-
Shield: Vulnerability-driven filtering of dynamic HTML. In Proceedings
of the Symposium on Operating Systems Design and Implementation,
Seattle, 2006. Usenix.

[36] M. Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the USENIX conference on System administration, pages
229–238, 1999.

[37] M. Ruef. browserrecon project, 2008. Available from http://www.
computec.ch/projekte/browserrecon/; accessed on 20 August 2008.

[38] C. Seifert, P. Komisarczuk, and I. Welch. Identification of malicious web
pages with static heuristics. In Austalasian Telecommunication Networks
and Applications Conference, Adelaide, 2008.

[39] C. Seifert, R. Steenson, T. Holz, B. Yuan, and M. A. Davis. Know
your enemy: Malicious web servers, 2007. Available from http://
www.honeynet.org/papers/mws/; The Honeynet Project; accessed on 20
August 2010.

[40] Skape and Skywing. Bypassing windows hardware-enforced DEP.

17

Uninformed Journal, 2(4), Sept. 2005.

[41] C. Song, J. Zhuge, X. Han, and Z. Ye. Preventing drive-by download via
inter-module communication monitoring. In ASIACSS, Beijing, 2010.

[42] R. J. Spoor, P. Kijewski, and C. Overes. The HoneySpider network:
Fighting client-side threats. In First, Vancouver, 2008.

[43] T. Stuurman and A. Verduin. Honeyclients - low interaction detection
methods. Technical report, University of Amsterdam, 2008.

[44] T. Toth and C. Krügel. Accurate buffer overflow detection via abstract
payload execution. In Proceedings of the Symposium on Recent
Advances in Intrusion Detection, pages 274–291, 2002.

[45] K. Wang. HoneyClient, 2005. Available from http://www.honeyclient.
org/trac; accessed on 2 Janurary 2007.

[46] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with Strider HoneyMonkeys: Finding
web sites that exploit browser vulnerabilities. In Proceedings of the
Network and Distributed System Security Symposium, San Diego, 2006.
Internet Society.

[47] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Studying
malicious websites and the underground economy on the Chinese web.
Technical report, University of Mannheim, 2007.

18

